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EXECUTIVE SUMMARY

The EOCAP II project greatly assisted the commercialization of a software product for remote

sensing. It not only provided support and mechanisms to refine and introduce the product to the

marketplace, but it also provided the opportunity for a thorough and documented demonstration

and accuracy assessment of the product in two critical and high visibility market segments,

wetlands and forestry management.

The United States Fish and Wildlife Service has estimated that over 200 million acres of

wetlands existed in the contiguous United States in the late 1700's. By 1980 less than 100

million acres still remained, with an annual loss placed at over 450,000 acres per year. This

fact when considered with the Administration's "no net loss of wetlands" position, make

accurate, responsive, and simplified means to identify and map wetlands more critical.

The concept of using indicator species to classify an area as wetland has been used by ecologists

intensively for the last decade. Because vegetation is considered a characteristic feature of

wetlands, the federal government has compiled a national list of plant species for regions of the

country that occur in wetlands. In the Southeastern part of the U.S., bald cypress and

water/swamp tupelo are three of the most common wetland species indicating an obligate

wetland (99% expected frequency in wetlands). In delineating and mapping wetlands,

identifying the location of an obligate wetland is the first step. The next step is to identify the

wetland/upland boundary around the wetland, which is a far more difficult task. This category

of indicator species includes those that occur in the transition zone between wetland and upland.
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This zone is where wetland speciesgradually intermix with the upland

characterizedby compiexspeciescombinationsandhigh spatialheterogeneity.

further removedfrom the obviouswetland, is called theuplandzone.

speciesand is

The next zone,

For thedemonstration,indicator specieswereselectedfor eachof thesezones: obvious wetlands

in which the cypress and bald cypress were used; for the transition zone swamp chestnut oak,

laurel oak, and water oak were used; and for the upland zone, the loblolly pine was used. As

the project work evolved it became clear that the subpixel process could be used for a large

variety of applications, which resulted in the incorporation of a Forestry application (upland

species) using loblolly pine.

Applied Analysis Inc. (AAI) made a timely and unique breakthrough in the processing and

extraction of remotely sensed information from LANDSAT TM (and other remotely sensed)

multispectral data. This subpixel technique, called the Applied Analysis Spectral Analytical

Process (AASAP) is an innovative addition to traditional multispectral classification tools.

Subpixel classification detects objects that occupy only a small fraction of a pixel and

discriminates between materials with subtle spectral differences. To supplement existing

classification tools, AASAP subpixel classification software is an add-on module to ERDAS

IMAGINE software. ERDAS, Inc., the industry leader, has made IMAGINE a powerful image

processing and analysis software package that AASAP is seamlessly integrated with.

Each pixel in a scene typically contains a mixture of materials. These materials contribute to

the pixel's characteristics. With AASAP, the contribution of specific materials of interest (MOI)
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within the mixed pixel are identified. Thus, enhanceddiscriminationand theability to classify

objects smaller than the spatial resolution of the sensor is achieved.

The primary components of AASAP consists of automated signature derivation and subpixel

classification tools. Signature derivation creates customized spectral signatures that address

specific MOI requirements. Subpixel classification reports the locations of pixels containing

identified fractions of the MOI, or in other words, the amount of the specific tree species in each

pixel. During classification a scene normalization algorithm (atmospheric correction) is applied,

which corrects for atmospheric and sun angle effects. Scene normalization permits spectral

signatures to be applied from scene-to-scene. This automated process allows for the detection

of the specific indicator species to the subpixel level without any human analysis or photo-

interpretations. The AASAP process makes maximum use of the existing ERDAS IMAGINE

tools that users of traditional classifiers have been using for years. This allows an experienced

ERDAS user to understand and use AASAP in less than one day.

A technical paper describing the AASAP classification of wetland and forestry tree species for

the product demonstration was submitted for publication in Photogrammetric Engineering and

Remote Sensing in May 1995. An overview of this application is presented here and is attached

as Appendix C. The study area included five wetland study sites in southeast South Carolina

and eastern Georgia. The study sites cover a broad geographical area (approximately 120 miles

apart) and are typical representatives of inland wetlands in the flatlands coastal plain

physiographic province ranging from Georgia to North Carolina. Each study site contains

wetland and upland ecological zones and a broad transition zone between the two. Additionally,

a forested site containing loblolly, longleaf, and slash pines was selected in the United States
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Forest Service managedSavannahRiver Site in SouthCarolina. This forested site was to

demonstratetheability of theAASAP subpixelprocessto differentiatebetweensimilar typesof

pine speciesand to showanotherapplicationusingthis subpixeltechnique.

The wetlandindicator speciesandforestedpine speciesmayoccurasa single isolatedplant or

tree. The groundarea occupiedby the indicator speciesmay frequently be smaller than the

groundareasampledby aremotesensor(groundsampleddistance(GSD)or instantaneousfield

of view (IFOV) of the sensor). Subpixelimageanalysistechniques,suchasAASAP, havethe

ability to detectspatially small occurrencesof the indicator species. The ideal commercially

availablesensorfor detectingthesespeciesin a broadareacoveragemodewas theLANDSAT

ThematicMapper(TM). The spectralbandcharacteristicsof theTM aresuitablefor detecting

variationsin vegetation,andthe 30mx 30mGSD hasproven,in otherAASAP applications,to

be suitablefor detectingsubpixelobjectsthe sizeof individual tree crowns. TheTM sensoris

a space-bornesensorthat is fully operational,provides repeatablecoverage,and has wide

commercialacceptance.For thesereasons"I'M is used as the primary sensor for earth resource

monitoring and was the sensor AAI choose for commercial use with AASAP. The LANDSAT

TM collections were accomplished in May 1992 because the time and rate of Spring "leaf-out"

is specie specific and maximum spectral contrast between many species occur at that time. At

approximately the same time as the LANDSAT collection, a NASA aircraft collected CAMS

imagery and color infrared (CIR) photography at a scale of 1:6,600 with a 9" format camera.

CIR film is the ideal film for vegetation analysis.

Extensive field sampling was accomplished by clemson University and USFS researchers. Use

of the CIR photography, CAMS imagery, TM imagery, USGS 1:24,000 scale topographic
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images, National Wetland Inventory (NWI) maps 1:24,000 scale, digital Soil Conservation

(CSC) soil survey sheets 1:20,000 scale, and site visits Using hand-held GPS field instruments

were used to located pixels to extract whole and subpixel signatures using the automated AASAP

as well as to verify the detections after processing the TM scenes with the derived signatures.

To ensure image geometric correction/accuracy, ground control points were required. Ground

control points with referenced features were located accurately in both the imagery and in the

field sites. The TM imagery was geometrically corrected and spatially registered in a

Geographical Information System (GIS). The GIS served as a computerized system for storing

and manipulating spatially registered planes of digital geographic data.

Random sampling techniques were used to independently determine the accuracy of the AASAP

subpixel process. Field verifications were accomplished for 200 pixel locations for tupelo, 200

pixel locations for cypress, and 200 pixel locations for loblolly pine. The total accuracy

assessment for tupelo was 91%, for cypress 89%, and for loblolly pine 88%. Of importance

was that the accuracy of AASAP detections away from the training area (pixels not in the area

of selected pixels to derive multispectral signatures of the species) was high compared to the

performance of traditional classification techniques, which at times can drop to 50%.

The foremost objective of this work was to demonstrate the commercial vitality of AASAP, not

only for wetland and forestry applications, but for a wide range of related applications and to

provide a software product that could be easily used by thousands of ERDAS users.

Additionally, during this three-year EOCAP II contract, _ AAI was able to participate in other

governmental and IR&D efforts to further automate the process to enhance its acceptability for

a wide range of potential users. The use of Product Evaluation Panels (PEP) during this three-
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year period was a major factor to cultivate potential markets and to receive valuable

recommendations to provide a more viable product. Three PEP meetings were conducted, one

at the University of South Carolina in Beaufort, South Carolina; one in Atlanta hosted by the

USFS; and the third at Clemson University in Clemson, South Carolina. Among many valuable

suggestions at the PEPs, the one to include the pixel fraction information (already available as

a secondary output) as a major selling point, and to display this information as a regular report,

was extremely worthwhile.

AAI researched the leading image processing and analysis packages available in the market and

decided to integrate AASAP with the industry leader, ERDAS, Inc. of Atlanta, Georgia.

ERDAS had sold over 7,000 licenses worldwide through 1994, and the projection was for

healthy growth periods throughout the 1990s. AAI commenced negotiations with ERDAS for

AASAP to be sold as third party software under ERDAS. This started out on a non-exclusive

basis and changed to an exclusive arrangement, where only ERDAS and AAI can sell AASAP

for a specified period of time under pre-determined sales formulas. Negotiations were concluded

and AASAP would be sold as an add-on ERDAS module starting by the end of the second

quarter of Calendar Year 1995. AASAP runs on Sun SPARC, HP 9000 Series, and SGI UNIX

computer workstations. These workstations are the most widely used and account for over 90 %

of the ERDAS base. The process works with imagery for the two most widely used sensors,

LANDSAT TM (six bands) and SPOT (three bands). The process is being enhanced to accept

other multispectral imagery. AASAP has been ported to the latest ERDAS IMAGINE software,

Version 8.2, and is backward compatible to Version 8.1_ To ensure stable software would be

provided to the potential customer, four beta sites were established and used for over nine
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months. AAI provided hands-on training and maintained close contact with each site. Clemson

University has functioned as an alpha and beta site for over 15 months.

The kinds of applications in addition to wetlands and forestry include, agriculture, geology,

terrain characterization, bathymetry (to include environmental/pollution), and point-type targets.

The kinds of markets and customers run the full gamut from commercial, government,

universities, and quasi-governmental/nonprofit organizations, which are currently being serviced

by ERDAS.

The pricing for the product was initially set at $5,500 for the first license, which includes one

year of software support. An introductory offer was established with a 25 % price reduction for

the first 90 days. Quantity discounts and government discounts are available consistent with

ERDAS' standard pricing policy.

The initial penetration of the market will be through direct contact with selected segments of

ERDAS' established base (primarily through the ERDAS worldwide sales/distribution force),

advertisements in periodicals like Earth Observation Magazine and Photogrammetric Engineering

and Remote Sensing (PE & RS), and direct mailings to PEP members and PEP-type contacts.

AAI and ERDAS have produced marketing literature titled the AASAP Subpixel Product Fact

Sheet and prepared articles for selected periodicals. The Product Fact Sheet is enclosed as

Figure 1.

The User's Guide, which provides the step-by-step procedures on how to use AASAP, has been

extensively alpha- and beta-site tested. The User's Guide also contains a complete Demo section
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AASAP Subpixel Product Fact Sheet

spectral signatures that address specific MOI

requirements. Subpixel classification reports the

locations of pixels containing identified fractions of

the MOI. During classification, a scene normaliza-

tion algorithm is applied, which precisely character-

izes atmospheric and sun-angle effects. Scene nor-

malization permits spectral signatures to be applied
scene-to-scene.

Overview

The Applied Analysis Spectral Analytical Process

(AASAP) subpixel processing technique is an innov-

ative addition to traditional multispectral (MSI) clas-

sification tools. Subpixel classification detects

objects that occupy only a small fraction of a pixel,
and discriminates between materials with subtle

spectral differences. To supplement existing MSI

classification tools, AASAP subpixel classification

software is a plug-in module to the ERDAS IMAG-
INE software.

Each pixel in a scene typically contains a mixture of
materials. These materials contribute to the pixel's
characteristics. With AASAE the contribution of

specific materials of interest (MOI) within the mixed

pixel are identified. Thus enhanced discrimination

and the ability to classify objects smaller than the

spatial resolution of the sensor is achieved.

The primary components of AASAP consist of auto-

mated signature derivation and subpixel classifica-

tion tools. Signature derivation creates customized

Benefits of Subpixel Processing

AASAP subpixel processing provides the following

advantages for multispectral MOI characterization
and detection:

• Materials containing as little as 20% of the mea-

sured radiance of a pixel can be detected

• For each pixel classified, the pixel fraction occu-

pied by the MOI is reported

Pixels can be classified with higher levels of dis-

crimination, such as species of trees or types of

crop

• Signatures from one scene can be used for classi-
fication in other scenes

• Consistent classification within and outside the

training area

• Improved classification accuracy

The Subpixel Processing

Technique

The AASAP subpixel processing technique is a new

approach to both deriving spectral signatures and

applying them to imagery. Traditional classification

techniques develop signatures by combining the

Applied Analysis Inc.
46 Manning Road, Suite 201 • Billerica, MA 01821-3976

508-663-6828 • 508-663-6389 8



spectra of training set pixels. These signatures

encompass the contributions of all the materials in

the training set. In contrast, AASAP signature

derivation extracts a component of the pixel spectra

that is most common to the training set. This results

in a signature that is representative of a specific

material or set of materials.

Upon deriving a signature, conventional classifiers

identify pixels in the scene that have the same spec-

tral properties as the signature. AASAP, however,

locates pixels containing the signature as a fractional

component of the overall pixet spectrum. A subpixel

background estimation and removal process is per-

fl_rmed by AASAP to produce a residual spectrum

fl_r each pixel in the scene. A detection occurs when

the difference between the residual spectrum and the

signature falls within a set of tolerances.

Suppression of subpixel background materials in

AASAP allows classifications of MOIs, even when

they occur in "mixed pixels'" containing a wide

range of background materials. AASAP reports the

amount of MOI associated with each pixel as both a

histogram and graphic overlay.

How to Use the Product

AASAP was designed as an additional classifier to

supplement your existing suite of classification

tools. It provides a higher level of discrimination

for most of your applications. AASAP is highly

specific in that the background removal function

attempts to discard materials from pixels with the

intent to provide a discriminating and unique signa-

ture of the MOI. The resulting signature is special-

ized to your problem or MO[. A good way to think

about the difference between AASAP signature

derivation and traditional methods is that AASAP

attempts to exclude dissimilar materials in pixels,

while the traditional methods attempt to include all

materials in the pixels. In some applications, an

operator would use one of the conventional classi-

fiers to classify a larger area that contains a mixture

of materials. In other applications, a more precise

classification of the same area, such as tree species.

requires the use of AASAP's subpixel classifier.

To derive a whole pixel or subpixel signature of the

MO[, you may choose to use any of the existing

ERDAS IMAGINE Area of Interest IAO[) tools to

develop your training set. The result will be subpix-

el detections with the use of either a whole or sub-

pixel signature. AASAP takes full advantage of

ERDAS IMAGINE display, analysis, and reporting

tools.

Data Types Supported by
AASAP

AASAP subpixel classification may be applied to

Landsat TM and SPOT HRV data. Support of addi-

tional MS data types is planned for the future.

Hardware Platforms

AASAP runs on Sun SPARC. HP 9000 series, and

SGI UNIX workstations.

Applied Analysis Inc.

The AASAP subpixel classification technique is phe-

nornenologically driven and was developed by world

class phenomenology scientists at Applied Analysis

Inc. AAI has devoted over ten years to provide

methods to solve the mixed pixel problem. The

product has been automated to permit widespread

use of this powerful classification technique.

Applied Analysis Inc.
46 Manning Road, Suite 201 ° Billerica, MA 01821-3976

508-663-6828 • 508-663-6389
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(including imagery), where the customer can derive signatures and run classification and then

compare their results to the AAI results. To assist the customer in evaluating their performance

with the demo, high resolution ground truth air photos were scanned in and are available on their

screen. The user can complete the demo of AASAP using all the functions in less than 30

minutes.

In conclusion, the EOCAP II project provided the opportunity for a thorough and documented

accuracy assessment of the AASAP subpixel process as well as the support and mechanisms to

refine and introduce the product into the commercial marketplace. It is anticipated that sales and

delivery of the product should start during late summer 1995.
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1.0 INTRQD_CTIQN:

This EOCAP II project is a remote sensing effort that makes use of commercially

available remote sensing imagery, commercially available UNIX computer workstations,

commercially available image processing and analysis software, and integrates them with

the Applied Analysis Inc. (AAI) unique and innovative technique, a subpixel process

called the Applied Analysis Spectral Analytical Process (AASAP), to significantly

improve the discrimination of materials. AASAP solves the mixed pixel problem by

detecting the components of pixels, thereby improving the discrimination and accuracy

of information extracted from available imagery. Currently, traditional classifiers search

for the common or similar spectral properties, and as such, groups materials into a

limited number of classes. This usually forces different types of materials into one class

or another. The AASAP subpixel process searches for the components within a pixel and

excludes different types of materials resulting in a finer level of discrimination with more

accurate material classifications. The technical approach AAI pursued was to remove the

background material and the resultant components in the pixel would represent the

material of interest. AAI's EOCAP task was to package and market this new technology

in a way that it could be easily understood and used by a large segment of the remote

sensing community.

1.1 Project Description.

The project started out as a commercialized application of Remote Sensing and

Geographic Information Systems for economic development planning for

Wetlands Management. About half-way into the project it was realized that the

subpixel process had very broad applications, and that an additional application
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should be undertaken to demonstrate the breadth and increased value of the

product. The additional application was in the forestry area, however, the same

procedure and methods were used for both applications and they could be used

for a large variety of other applications.

A demonstration of the product, including documentation of accuracy, was

considered central to the strategy for selling the product. A technical paper

describing the AASAP classification of the wetland and forestry tree species for

the product demonstration was submitted for publication in Photogrammetric

Engineering and Remote Sensing in May 1995. An overview of this application

is presented here and is attached as Appendix C. The study areas for the

demonstration were in South Carolina and Georgia on forested wetlands and in

the Savannah River Site in South Carotina for the forest application. LANDSAT

TM imagery was collected on May 4, 1992 after complete spring leaf-out. Four

study areas from within the wetlands LANDSAT TM scene were analyzed (Ref.

Figure 2), and a larger study area in another LANDSAT TM scene acquired in

May 1991 was used for the forest application. The wetland areas were processed

with AASAP to detect the location of cypress and tupelo trees, and the forestry

area was processed to detect loblolly pine trees and to discriminate between

longleaf and slash pine. Ground truth data was obtained from the field, the

NASA CAMS imagery, CIR photographs at 1:7,000 resolution, and the National

Aerial Photography Program (NAPP)CIR aerial photographs (1:40,000 scale).

This data was used to assist in locating signature derivation training sets and to

accomplish the accuracy assessment.
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Figure 2

South Carolina

Charleston

Georgia

o ;avannah

• Training area

• Test area
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Spectral signatures were developed for the wetland species and forestry specie and

appliedto the entire scene. Clemson University and the U.S. Forest Service (at

Clemson University) accomplished

measurements of the different species.

the accuracy assessment with field

A field verified accuracy of 90% was

achieved considering errors of omission and commission. Outside the training

area the accuracy was only about five percent less, and this compared very

favorably to traditional classification techniques where the classification

performance outside the training area dropped sharply.

Concurrently with the study site work, AAI was preparing the product for the

commercial market. Initially, the early market analysis considered a software

product and a service bureau type of operation. As the project progressed, there

were certain outside developments that resulted in the service bureau option being

dropped. A major influence was the vast improvement in workstation

performance (speed and storage) with substantial decreases in pricing. The

second major influence was the ability of AAI to automate (through another

contract) the signature extraction and environmental correction factor so that an

ERDAS user would be able to derive their own signatures. This meant that an

AAI scientist was not needed to assist in the development of multispectral

signatures. These two major developments caused AAI to re-assess the need and

viability for AAI to extract and sell signatures through a service bureau type

operation. About half-way into the project AAI described the changing nature of

the market conditions to NASA EOCAP and AAI pursued a focussed and

vigorous effort to reach this broader market through an easy-to-use add-on
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moduleintegratedwith ERDASIMAGINE. AAI was involved in negotiatinga

third party softwarearrangementwith ERDAS, Inc. of Atlanta, Georgia. By the

end of 1994, ERDAS has an installed userbaseof 7,000 licenseswith sales

increasingat about 15%-20%per year. The third party softwarearrangement

changedfrom a non-exclusiveto an exclusive with only ERDAS and AAI

marketingand selling the AASAP softwareproduct. This meant that AASAP

would be marketedand sold throughtheindustry leaderwith a worldwide sales

force and distribution network alreadyin place. The remotesensingmarket for

AASAP wasnow definedasthelargestavailablewith theestablishedpresenceof

ERDAS throughoutthe world.

AAI usedthe ProductEvaluationPanel (PEP)approachto introduce theremote

sensingcommunity to the methodologyand benefit of subpixel analysis. AAI

also receivedvaluable feedbackfrom commercial,government,and university

userswithin thePEP. ThreePEPmeetingswere heldat different locationsin the

Southeasternpart of the United Stateswith experiencedimage processingand

analysisusers. This techniquewas usedto prime the market and provide the

stimulusfor future sales.

To ensure that the software was stable, alpha and beta testing sites were

established. The software started testing outside of AAI at the Clemson

University alphasite in April 1994andatfour otherbetasites in October 1994.

The four betasiteswere ClemsonUniversity, ERDAS, Naval SpaceCommand,

and Air Force Space Command. The beta sites were selectedto represent
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university, commercial, and government customers. AAI provided three days of

formal training to each alpha/beta site participant, and over the course of more

than one year, numerous valuable suggestions were received and incorporated into

the product.

The AASAP software product was offered for sale in June 1995 initially by AAI,

to be followed later in the summer by ERDAS.

1.2 Objectives.

The overall objective was to develop a commercial product using remote sensing

technologies for applications requiring subpixel techniques called the Applied

Analysis Spectral Analytical Process (AASAP).

1.2.1 The detailed objectives that support the overall objective are as follows:

(a) Determine indicator species locations to predict the presence of

wetlands for the demonstration product.

(b) Determine the ability to discriminate between similar tree species,

like loblolly, slash, and longleaf pine for the demonstration

product.

(c) Provide a detailed, credible accuracy assessment of AASAP for the

demonstration product.

(d) Provide automated (easy-to-use) software for customers to use

AASAP in conjunction with ERDAS.

(e) Develop and execute a credible marketing approach and strategy.
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1.3

(f)

(g)

(h)

Demonstrate the flexibility in using the AASAP subpixel process

for a variety of different applications:

Use commercial-off-the-shelf (COTS) hardware (workstations),

software, and imagery (like LANDSAT TM and SPOT MS).

Demonstrate the ability and ease to integrate the AASAP detections

with commonly used GIS procedures.

The AASAP process has been under development for ten years. It is the next

logical step to improve traditional classification techniques by improving the

discrimination level of available remote sensing data. The improved

discrimination level from whole pixel (traditional classification techniques) to

subpixel provides the end user with a new capability to solve problems.

2.0 APPROACH TO COMMERCIALIZATION:

AAI, as a small company of thirteen people, realized that they could not effectively

market and sell the product themselves. The AAI company team had minimal

marketing/sales experience and was also constrained by the limited amount of funds that

could be spent in this area. Over a period of time a decision was made to negotiate a

third party software agreement with ERDAS, Inc. ERDAS had a widely accepted,

powerful image analysis and manipulation software product, called IMAGINE, that AAI

could smoothly integrate with. The IMAGINE software accomplished the traditional

whole pixel image classification processes, andthe AASAP subpixel process was a

logical extension to provide higher levels of discrimination and accuracy. The seamless

integration with IMAGINE, with the same look and feel, resulted in a smooth transition
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for theIMAGINE usersto learnand useAASAP. The thrust herewas to makeit easy

andcomfortablefor theERDASIMAGINE userto useAASAP. This wasaccomplished

by usingasmuchof theIMAGINE functionalityaspossibleas inputsandoutputinto the

AASAP processand to make the AASAP windows look like the IMAGINE windows.

As a result of this tight integrationwith the ERDASIMAGINE software, thebetasite

userswere trainedandusing AASAP in less thanone-halfday.

AAI madea concertedeffort to demoandmakepresentationsof theproductat the large

conferencesin conjunctionwith ERDAS, for example, GIS/LIS, ASPRS, and DMA

IndustryDaysfor governmentaccounts.AAI alsodemonstratedAASAP at universities;

ERDAS, SPOT, and EOSAT UsersGroup Conferences;PERSRegionalWorkshops;

ProductEvaluationPanelWorkshops;and countlessdemosat AAI's facility. Articles

werepublishedin theEarthObservationMagazineandin theIEEE SpectrumMagazine.

All theaboveactivity wasplannedaboutone yearaheadof launchingthe product.

Thepricing of theproductwasaccomplishedin concertwith ERDASandwasestablished

to beattractive!ypricedin considerationof similar typeadd-onmodules. The price was

set at $5,500per license,which includesthe first year of softwaresupport. Software

supportfor subsequentyearsis $500for the first licenseand $250 for eachadditional

license. An introductoryprice of $4,125is offered, which is 25% off the list price. A

standarddiscount of 20% was offered to govemmentorganizations(exclusiveof the

introductoryoffer). Discountsfor 2-5 licensesisOffered at 25 % off the list price, and

six licenses and above at 50% off the list price. This pricing is consistent with the

ERDAS pricing strategy and is well known to ERDAS users.
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The major market penetration approach was through ERDAS to their current domestic

and international customer base. ERDAS was selected as a beta site and some of their

key personnel were trained at an early stage on AASAP. Other conferences, sales

meetings, user group meetings, and exchange meetings between the two companies

provided ample opportunity for ERDAS personnel to learn the AASAP subpixel process.

Additionally, the AASAP subpixel capability will generate sales to customers that have

hard problems that were not solvable with traditional image processing techniques. AAI

recognized that their established presence in the military/intelligence market will provide

some assistance in selling those customers on an advanced remote sensing image

processing technique. Some of these military/intelligence customers have used the

traditional image processing techniques, and the spatial resolution of the sensor data was

not adequate for their problems. The AASAP subpixel process effectively improves the

discrimination level of LANDSAT or SPOT by a factor of four to five. As such, with

no change in the sensor or other ground data processing techniques, the automated

AASAP subpixel process now offers a new dimension to solve these more difficult

problems without the use of a photo-interpreter. The end result is an effective means to

accomplish broad area searches in a passive mode.

ERDAS, in coordination with AAI, will launch the product with a combination of press

releases and a direct mailing to the ERDAS customer base. The ERDAS sales force and

distributors will follow-up with targeted accounts, both domestically and internationally.

AAI will make direct contact with selected military/intelligence users as well as the

ERDAS military sales group.

-9-



3.0 RESULTS:

3.1 Business Results.

The AASAP subpixel product is being launched during the summer of 1995. It

is expected that sales will not start materializing until the fall of 1995. The initial

buyers of AASAP subpixel licenses will most likely be research organizations

(commercial, government, and universities) who are interested in continually

improving the discriminating capability of their remote sensing products. It is

anticipated that the international market will generate early interest, particularly

with the quasi-governmental space/remote sensing organizations. As the product

is accepted in the remote sensing marketplace, the more general commercial

(production related) ERDAS IMAGINE users will start to buy the product.

The existing market is over 7,000 ERDAS IMAGINE licenses, which is growing

at 10-15% per year. Since AASAP is an add-on module to the IMAGINE

product line, providing higher levels of discrimination and accuracy, there is an

opportunity to sell the subpixel product to most of these users. The product is

a natural extension to the ERDAS IMAGINE whole pixel classifiers, whereby the

user easily selects the subpixel process icon off the main menu and the image is

in a subpixel classification mode using many familiar ERDAS IMAGINE

functions. The User's Guide documentation has been tested and updated for over

two years, and it has received high marks from commercial, government, and

university users.
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The revenuesanticipatedin 1995 will be modestas the product is carefully

releasedin the marketplace.Gradualacceptanceis critical with the selectedfirst

users. Further improvementson thespeedof the softwarewill bea factor in an

increaseof salesin 1996. To date,theproducthasbeenunderacceptancetesting

at ERDAS and no product hasbeendelivered. The first saleis pendingwith

delivery in Septemberto a researchorganizationin Germany. The answersto

BusinessDevelopmentRelatedQuestionsarecontainedin Exhibit 2.

3.2 Technical Results.

The most important development of the product was the automation of the

signature derivation module, which allows users to develop their own signatures

on their workstations. This occurred in conjunction with the EOCAP II contract.

The second most significant development of the product was the automation of

the atmospheric correction factor, which permits the user to use signatures

developed in one scene to be used in any other scene allowing the transferability

of signatures.

The extensive accuracy assessment funded under the EOCAP II contract was the

critical link to establishing the credibility of the AASAP product. The accuracy

assessment of the cypress, tupelo, and loblolly pine species enabled AAI to

actively promote the verifiable improvement by using the AASAP product in

comparison to traditional whole pixel Classifiers, like minimum distance,

maximum likelihood, etc. The accuracy assessment was performed by Clemson

University and the U.S. Forestry Service with extensive field measurements to
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Business Development Related Questions

o What developments, changes, new attitudes, etc. have you seen in the markets that

are relevant to your EOCAP H project since you started it? These can include

changes in market demand, changes in government policy, changes in data, and

hardware prices, etc.

The marked advancement is faster UNIX computer workstations with substantial

increases in memory for image processing with a corresponding decrease in the

prices of these powerful machines. This could not have been forecasted in 1990

when AAI put the EOCAP II proposal together. As a result of these dramatic

positive changes in the marketplace, AAI changed its product strategy from a

service bureau type of operation to a licensed software product where the user can

develop material signatures automatically and accomplish the related image

processing on the user's own computer workstation. This will result in a much

wider demand for the AASAP subpixel product and paved the way for the third

party arrangement with ERDAS to promote, market, and sell AASAP.

o What are your expectations about changes in the markets that are relevant to your

EOCAP II project between now and 1996? Between now and the long-run (pick a

time period of your choice - say 2000 or 2010)?

The changes in the marketplace between now and 1996 will be the availability of

remote sensing image products on PCs. The improvements in the PC software

and significant increases in speed and disk space will introduce remote sensing

capabilities to a whole new customer base. The expected changes between 1996

and the year 2000 will be the availability of the abundance of new lower priced

commercial remote sensing image products. These new multispectral image

products will be higher resolution with three to four bands. The AASAP subpixel

capability will always be able to provide further improvements in resolution

without regard to the resolution of the sensor and provide the unique material

pixel fraction information. Additionally, the introduction of satellite hyperspectral

imagery will be available before the year 2000, and AAI has a hyperspectral

process "BANDS", which is in alpha testing with solid performance results. The

"BANDS" software process also reduces the high data processing burden by

selecting the diagnostic information by band location. AAI plans to be the leader

in hyperspectral image processing and be in the position to provide a corollary

product by 1997.

Exhibit 2

Page 1 of 3

-12-



o What are the sources of uncertainty you face as you continue commercial remote

sensing efforts or that you faced if you have discontinued these efforts? Uncertainty

may relate to business risk, technical risk, data unavailability, legal and regulatory

hurdles, government policy, funding, etc.

The area of uncertainty is the quality of the data from these planned new remote

sensing products. It is highly important that the band-to-band registration

integrity be maintained. Also, the other area of uncertainty is the acceptability

of the AASAP product by the user community. The AASAP subpixel product is

easy to use and is seamlessly integrated with ERDAS IMAGINE, however, the

user has to accomplish some additional actions that are not part of a traditional

classification effort. The concern here is not with the more sophisticated user,

but is the AASAP subpixel product reaching the average less sophisticated

ERDAS IMAGINE user? AAI has planned some product improvements to

address these areas that should be available in the next software release in January

1996.

m Have you been able or do you expect to reap any productivity gains in your

company as a result of EOCAP II? If so, could you quantify them, to the extent

possible, in terms of dollars saved per year or per unit of output?

As a combined effort with the EOCAP II project and other related efforts in the

company, the signature development and scene-to-scene processing has been

automated to the extent that less skilled personnel can now accomplish these

actions as well as doing it much faster.

ao Productivity Gain: The signature development and scene-to-scene

processing can be done in about one-fourth the time as previously

accomplished and by personnel making about one-half the salary.

b. Rough Estimate of Annual Cost Savings: $56,000 per year plus the

ability to take on more projects and complete them on a timely basis.

. Please share with us any other developments related to EOCAP H that might be

significant to us in managing EOCAP or communication success in the industry to

policymakers. Examples are new jobs/divisions created within your company,

patents, articles in peer-reviewed or other journals or the trade press (please give

us citations or better yet, provide us copies if you can spare them).

The company almost doubled in size from the start of the EOCAP project through

its completion (7 to 13). Also, the company upgraded its computer workstation

capability by a factor of 10.

Exhibit 2

Page 2 of 3
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Articles publishedinclude:

a. Earth Observation Magazine, July 1994, titled: "Subpixel Analysis

- Process Improves Accuracy of Multispectral Classifications."

b. IEEE Spectrum Magazine, March 1995, titled "Remote Sensing."

c. Articles submitted to PERS (Photogrammetric Engineering and

Remote Sensing Magazine) and to the GIS Europe Magazine.

m Do you have any bones to pick with how EOCAP is managed, public policy relating

to EOCAP, or any other issues?

No. AAI has appreciated the frank, honest, and helpful approach the NASA team

has rendered.

o Is there anything else you'd like to report about EOCAP - pro or con - from the past

year?

Yes. I think that one problem small companies have is raising the capital to buy

advanced computer workstations and related equipment/software tools. It would

be helpful if, through the EOCAP, that a provision would be made for small

companies to lease these more powerful machines and to acquire advanced

software tools. Also, a seminar/workshop sponsored by EOCAP using their

internal capabilities and/or inviting potential suppliers would be very helpful.

This could be done on an annual basis, maybe during the annual review process
at SSC.

Exhibit 2

Page 3 of 3
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confirm that the different specieswere detectedor that detections were made of

other species (commission error) or that the MOI species were missed (omission

error). The accuracy assessment was a highly involved process which included

warping the LANDSAT TM image to aerial photographs and USGS 7.5' minute

map sheets, as well as using GPS devices to confirm exact geographic locations.

Pixels were randomly selected over a number of image locations to determine the

accuracy. The total classification accuracy for each specie was:

Tupelo: 91%

Cypress: 89 %

Loblolly Pine: 88 %

Outside the signature training set areas, the performance of AASAP dropped by

approximately 5 %, but the traditional classification techniques dropped up to

50%. In other words, using traditional techniques, most pixels of the interested

tree species were not detected and pixels containing other tree species were

detected, which resulted in a substantial amount of confusion.

4.0 POST-EOCAP II ACTIVITIES:

Further product development activities include: (a) speed improvements planned to be

incorporated in January 1996 for both classification and signature derivation; (b)

incorporation of an automatic cloud sampler eliminating the need for the user to draw

ERDAS IMAGINE Areas of Interest (AOIs), which results in a qualitative decision of

pixels that contain clouds; (c) incorporation .of a Signature editor, which will allow the

user to view and compare the signature spectrum; (d) Quantitative Image Characterization

(QIC), which will allow the user to classify the image with multiple signatures
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simultaneouslyinsteadof one-at-a-time;(This is a major effort which is plannedfor

releasein thefall of 1996. It is envisionedthattheuserwill havetheoption of working

in thetraditional onesignaturemodeor selectingtheQIC multiple signaturemode); (e)

incorporatinga hyperspectmlcapability using AAI's BANDS softwareprogram. This

hyperspectralcapability is underalphatesting,anda releaseis plannedfor early 1997.

This will bea significant functionalityadd-onto the multispectralcapability.

In the marketing area,AAI and ERDAS plan to run an ad in the Earth Observation

Magazinewith a pressreleaseanddirectmailing to U.S. ERDAS IMAGINE usersin the

summerof 1995. The penetration of the international market is planned for the

October/November1995time frame with presentationsin Germany to the European/

African/Middle East ERDAS Users Group Meeting and to the ERDAS international

distributors. Someof the product improvementswill also help the averageERDAS

IMAGINE user feel more comfortablein usinganadvancedclassifier like the AASAP

subpixelprocess. AAI is scheduledto presentpapersand exhibit the AASAP software

with ERDASat thefollowing majorremotesensing/GISconferences:EOSAT Seminar,

Denver, Colorado, October 1995; GIS/LIS, Nashville, Tennessee,November 1995;

ASPRS/ACSMAnnual Convention,Baltimore, Maryland, April 1996.

5.0 LESSONS LEARNED FROM EOCAP II:

AAI learned a hard lesson in not being thoroughly customer/market focused in the

beginning of the EOCAP II program. The EOCAP II evaluators greatly helped AAI in

re-looking at the market and adjusting the product based on changing market conditions.

The Product Evaluation Panels (PEPs) were extremely helpful in generating interaction
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with the potential customersas well as receiving valuable inputs that resulted in a

modifiedenhancedproduct. Oneareathat could havehelpedAAI, beinga very small

company, would be an expansionof the EOCAP to assistcompaniesin borrowing,

leasing,or acquiringrelatively expensiveUNIX workstations.
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APPENDICES:

Ao LANDSAT TM imagery of wetlands classification in South Carolina.

° Scene 201 is a TM image unprocessed with AASAP where the wetlands is grossly

outlined in the middle of the scene in pink. The light blue/white areas are open

fields and the dark areas are mostly pine trees.

o Scene 202 is the same area classified with AAI's subpixel process. The yellow

detections are whole pixels, and the red detections are subpixel detections of

tupelo trees. The subpixel detections provide a fine level of discrimination

indicating wetland areas not classified by traditional classification techniques.

° Scene 203 is the same scene illustrating discrimination between tupelo and cypress

trees using the AASAP subpixel process. The red pixels contain both cypress and

tupelo trees.

1 Scene 204 shows the tupelo tree detections overlaid onto a standard USGS Quad

Map. Additionally, the amount of tupelo trees is displayed in the color coded

legend indicating 76-100%, 51-75%, and 25-50% of the tupelo trees in the

detected pixels.

° Scene 205 shows the AASAP classification of each of the five wetland tree

species.

. Scene 206 shows the AASAP classification of the five wetland tree species draped

over a Digital Elevation Model (DEM) to illustrate how AASAP output can be

used in a GIS or for post-processing. The wetland areas are in the depressions

between the steep topographic areas.

B. LANDSAT TM imagery of pine tree plantings in the Savannah River Site in South
Carolina.

o In Scene 301 the loblolly pine trees are detected by the yellow indicators on the

image. This is a rather hard problem in that loblolly is being detected from

longleaf and slash pines.

o In Scene 302 the loblolly detections are overlaid onto a USFS stand map of the

area. Individual pine stands appear as polygons, color coded according to what

specie was planted and the percent area of the stand which is loblolly. This map

can be used by resource managers to determine where the densest loblolly stands

are and how much loblolly occurs in non-loblolly stands. In many cases, the

amount of loblolly which had been infiltrated into non-loblolly stands had been

under-estimated.



o Scene 303 shows the loblolly pine classification displayed in the ERDAS

IMAGINE software. The AASAP module icon is the bottom icon on the icon

panel, and the AASAP material pixel fraction information is displayed in the

IMAGINE color legend.
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SUBPIXEL CLASSIFICATION OF LOBLOLLY PINE
USING ERDAS IMAGINE AND AASAP

The Applied Analysis Spectral Analytical Process (AASAP) was used

to classify loblolly pine in a U.S. Forest Service forest within the Savannah
River Site in South Carolina, where discrete, well defined stands of various

species of southern yellow pine were planted. Although only one species was
planted in each stand, through time, aggressive species like loblolly infiltrated

many non-loblolly stands. The AASAP subpixel classifier was used to

accurately identify pixels containing loblolly. The classification results and

a digital U.S.F.S. stand map were used in a GIS to quantify the amount of

loblolly in each stand and 170 randomly selected pixels were field verified to

independently evaluate errors of omission and commission. The total
classification accuracy was 88% (91% omission accuracy and 85%

commission accuracy). A kappa coefficient can. not be calculated for a

subpixel classification accuracy assessment because a single pixel can be

correctly classified into more than one class.The results indicate that there are
many non-loblolly stands which contain greater than 20% loblolly.

This map shows the loblolly classification on the U.S.F.S. stand map.

The TM pixels classified as containing loblolly appear as small black dots.

Individual pine stands appear as polygons color coded according to what

specie was planted and the percent area of the stand which is loblolly. This

map can be used by resource managers to determine where the densest

loblolly stands are and how much loblolly occurs in non-loblolly stands. In
many cases, the amount of loblolly which had infiltrated into non-loblolly

stands had been underestimated by the U.S.F.S.

The ERDAS IMAGINE Spatial Modeler was used to create the images
above. The AASAP subpixel classifier is a module in ERDAS IMAGINE

and all processing used to create the maps above was accomplished within
ERDAS IMAGINE. The AASAP subpixel classifier can be used to classify

a wide variety of natural resource and man made materials in multispectral

imagery.

Clemson University
Strom Thurmond Institute

Clemson, South Carolina

Applied Analysis Inc.
Billerica, Massachusetts

Contact: Don Damm (508) 663-6828
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Subpixel Classification of Bald Cypress and Tupelo Gum
Trees in Thematic Mapper Imagery

Abstract

A 'subpixel spectral analytical process' was used to classify, Bald Cypress and Tupelo Gum

wetland in Landsat Thematic Mapper imagery in Georgia and South Carolina study areas. The

subpixel process enabled the detection of Cypress and Tueelo trees in mixed pixets. Two hundred

pixels were field verified for each tree specie to independently measure errors of omission and

commission. The cypress total accuracy was 89% and the tupelo total accuracy was 91%. Field

investigations revealed that both cypress and tupelo trees were successfully classified when they

occurred both as pure stands and when mixed with other tree species and water.

1. Introduction

Scientists have been trying to extract wetland information from Landsat Multispectral Scanner

(MSS) imagery since 1.972, Landsat Thematic Mapper (TM) imagery since 1982, and SPOT

multispectral data since I986 (Hodgson et al., 1988; Jensen et al., 1995). Investigators have

successfully inventoried large monospecific stands of wetland plant species using pattern

recognition image classification techniques. However, heterogeneous wetland containing several

plant species plus standing water often cannot be classified correctly with the 80 x 80m, 30 x 30

m, and 20 x 20 m spatial resolution remote sensor data. The per-pixel classification algorithms

simply cannot disagg-regate the individual materials of interest within the instantaneous-field-of-

view (IFOV) of the sensor system.

For example, consider the hy-pothetical but representative TM pixel data shown in Figure 1 that

contains approximately equal percentages of cypress (33%), tupelo (33%), and water (33%). Table

1 and Figure la reveal that the integated digital number (DN) value output of this pLxel in six

bands (the TM thermal band 6 is excluded from discussion) will be substantially different than any

of the spectral reflectance spectra associated with 'pure' cypress, 'pure' tupelo, and 'pure' water

land cover. The inte_ated 'mixed pixel' usually causes classification confusion and prohibits the

classification of individual materials of interest with traditional classifiers because the mixed pixel

composke spectral signature is unlike the spectral signature of the individual surface materials

occurring as subpixel components.
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Table 1.HypotheticalLandsatThematicMapperdataof five 30x 30m pixelscontaining,
respectively,pure cypress,pure tupelo,purewater,yandequalproportionsof cypress,

tupelo, and water.

i 21 27 24 17 24

2 18 15 21

3 33 27

4 _,8 42

5 42 33

39

12

12 18

13 24

9 17

6 13

27 3 10

33

27

33

Individual wetland plant species and surface materials which occur as subpixel components in TM

mixed pixels have the potent_iN to be spectrally resolved and classified using subpixet processing

techniques that can distinguish surface materials smaller than the spatial resolution of the sensor.

This paper fi_rst briefly describes the subpixel image classification process, (Applied Analysis

Spectral Analytical Process - AASAP). A detailed description of the process will be presented in a

separate paper. The process is then applied to classify wetland Bald Cypress (Taxodiurn

distichum) and Tupelo Gum (Nyssa aquatica) in TM imagery of South Carolina and Georgia

study areas (Barry, 1980). The results of an extensive accuracy assessment involving global

positioning system (GPS) field verification of 200 pixel locations for each tree specie is also

presented.

2. Subpixel Processing

Many wetland mapping applications have not been seriously affected by the mixed pixet problem

because analysts have convinced themselves that they can be satisfied by labeling 'mixed pixels'

with 'mixed labels'. For example, while it would be wonderful to idendfy the exact proportion of

a pixeI containing 70% cypress and 30% tupelo, most wetland scientists simply call the class

'mixed cypress-tupelo' because they have no mechanism for extracting information about the

proportion of individual materials of interest using traditional per pixel classification logic. The

traditional classifiers have generally performed well for classifying very large, monospecilic stands

of tree species, but they have not been successful in the identification of the proportions of several

materials of interest found within the IFOV of a sensor system (Jensen et al., 1995).

Thus, there is the need for subpixel processing, defined as the digital search for specific

materials-of-interest (MOI) from within a pixel's mixed multispectral image reflectance spectrum.

Subpixel processing does no__!provide information on where the material of interest (MOr) occurs
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within the pixel. It does provide important information on the relative proportion of the material-of-

interest found within a pixel (e.g. this pixel contains 73% cypress). The logic of subpixel

processing is discussed and applied to wetland environments in Georgia and South Carolina.

However, it is applicable to any mixed pixet problem such as monitoring residential development at

the urban fringe or mapping suspended sediment loads in water bodies.

2.1 How the Subpixel Processor Works

The general subpixel processing steps are summarized in Yigure 2. First, unrectified multispectral

remote sensor data is processed to remove atmospheric radiance and attenuation effects. Then, a

sig_nature is derived for a material of interest (MOt). Each pixel is then classified as to its fraction of

material of interest present. For example, if the MOI is cypress, each pixel in the scene will

contain a number from 0 to 1.0 identifying the proportion of cypress within the pixel. Information

about the various stages are presented below.

To address the mixed pixel problem, the subpixel processor assumes that each image pixel, Pro,

contains some fraction, fro, of the material of interest, M, (e.g. cypress), and the remainder, 1-

fm, contains other background materials, Bin:

Pm = (fro x M ) + [(1-fro) x Bm] (1)

In Figure 1, if cypress were the material of interest (M), then fm would equal 1/3 and the

remainder of the background surface cover materials (Bin) would be 1-fro or 2/3. In Equation 1,

M is a single specified material of interest such as cypress. The value Bm in Equation 1 refers to

all of the other materials in the pixet, treated as a single combined set of "background" materials.

The value fm is always an areal fraction. Equation 1 assumes that M is invariant from pixel to

pixel, while Pm, fm, and Bm can vary from pixel to pixel. In this paper we report results for two

materials, cypress and tupelo. It is important to remember that each material was searched for

independently, i.e. in one analysis M was cypress and in another analysis M was mpeto.

For the applications reported here, M and Bm are assumed to be optically thick in at least one of

the spectral bands. Therefore, the radiant contributions from M and Bm are assumed to be

approximately linearly additive in Spectral bands, n:

Rm[n] = (kin[hi x T[n]) + ((1-kin[n]) x Nm[n]) (2)

where, .Rm[n], Tin], and Nm[n] are the radiances from Pm, M, and Bm in pixel m and band

n, respectively, km[n] is the radiant fraction contributed by T[n] in pixel m and band n.



To useEquation2 to searchfor thematerialsof interest,theraw digital numbervaluesfor pixel m,
i.e. DNm[n], arecorrectedfor atmosphericallyscatteredsolarradiance,atmosphereattenuationof

incident and reflected solar radianc.e,illumination and sensor look angles, and the sensor

multispect_raltransferfunction.An environmentalcorrectionmoduleusessampledpixels from the

scenebeing processedto automatically derive the correction factors (Figure 2). An offset

spectrum ARAD[n] is derived that includes the needed additive correction. A gain factor

spectrum, SF[n], includes the needed multiplicative corrections. Applications of these two factors

to the pixel DNm[n] yields the equivalent integrated in-band, bi-directional reflectance of the

maerials in the pixel:

DNm[n] - ARAD[n]

rm[n] = (3)

SEn]

which provides the requisite proportionality to Rm[n] in Equation 2. ARAD[n] and SF[n] are

scene specific, and are assumed to be invariant from pixel to pixel within the scene. Pixel to pixel

variations of haze and other environmental factors may not be directly compensated for by these

factors.

During the classification process, the subpixel processor applies the ARAD[n] and SF[n] factors

to DNm[n] for each pixel under investigation to transform it to a spectrum that is proportional to

Rm[n] in Equation 2. Tin] in Equation 2 is provided by the reference spectra/signature for the

material of interest. The two unknowns in Equation 2, km[n] and Nm[n], are then solved for by

an intelligent back_ound identification process that selects an appropriate Nm[n] for the pixet and

then solves for km[n].

The process for determining the appropriate Nm[n] for the pixel under investigation uses the

spectral difference between Rm[n] and T[n] to intelhgently characterize a set of spectral

requirements on Nm[n] and km[n]. The process then automatically searches the image for

candidate pixels that satisfy these requirements. A processing module provides a characterization of

the image that limits the search and the number of Nm[n] candidates that are tested per pixel. The

best Nm[n], km[n] candidate pa._- is selected by solving Equation 2 for the material of interest

spectrum in pixel m, i.e.:

Tm[n] = (Rm[n] - ((1-km[n]) x Nm[n])) / km[n] (4)

and comparing the Tm[n] with the reference signature for the material of interest, T[n]. After

selecting Nm[n], Equation 3 is then solved for kin[n] and transformed to the derived scalar

5



fraction,km, forpixelm.

2.2 Obtaining the

( IOI)

The value km is the final output reported by the subpixel processor.

Training Signature of the Material of Interest

The reference training signature for the material of interest, T(n), is obtained using a signature

derivation module (Figure 2). A set of training pixets is identified that is "known to contain the

material of interest, M. The fraction of each training pixel that contains the material of interest is

estimated. This is specified as an estimated mean fraction for the training set and is assigned to all

of the training pixels. For both cypress and tupelo the fractions were estimated to be approximately

0.90. An intelligent rule-based process then automatically solves Equation 2 for T[n], using the

training pixels for Rm[n] and transforms the estimated mean fraction into km[n]. Then, Nm[n]

is treated as a second unknown. Nm[n] is automatically solved using a process that is analogous

to the Nm[n] selection process described above for the classification module.

The process employed by the signature derivation module yields a signature, T[n], that represents

the material that was most common to the set of training pixels at the specified km. This is in

contrast to most traditional multispectral classifiers that produce signatures that include the spectral

variance represented by the pixels in the training set. Therefore, the subpixeI process does not

simply accommodate the spectral variance of the training set pixels in the signature. It instead

extracts the signature of a material that is common to the training set pixels. This has the advantage

of allowing relatively pure signatures for materials of interest to be derived from mixed pixels,

rather than deriving signatures for the mixture of materials in the training set. Rather than using the

variance of the training set pixels to define the variance of the signature, the process uses Tin[hi

extracted from pixets within the training set and away from the training set to derive the variance.

This has the advantage of suppressing the Variance introduced by the other materials in the training

set. This produces signatures that perform relatively uniformly across the scene being processed, at

least to the extent that the natural variance of T[n] is represented by the training set.

After deriving the spectrum of the material of interest, T[n], the signature derivation module next

automatically derives a set of spectral tolerances that predict how much Tm[n], defined by

Equation 4, might vary from the nominal spectrum due both to actual spectral variations of T[n]

and to errors in selected Nm[n] and km[n] during classification. The tolerances are used during

the classification process to f'flter the spectra of the detected occurrences of the material of interest,

Tm[n], thereby minimizing errors of omission and commission during classification.
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2.3 Subpixel Processing in Relation to Other Approaches

The subpixel processing provides a more robust discrimination than traditional per pixel

multispectralclassifiers-for pixelswherethematerialof interest is mixed with othermaterials.It

alsoprovidesmoreuniform performanceawayfrom thetrainingarea.This is aconsequenceof the

enhancedpurity of reference signatures,discussedabove. It is also a consequenceof the

background suppressioncapability used during classification (Equation 4). The spectral

contribution of the other (background) materials in the pixel can significantly distort the pixel

spectrum from that of the material of interest. By suppressing these background contributions,

discriminations can be maintained between spectrally similar materials even when the material of

interest occupies only a small fraction of the pixel. Traditional multispectral classifiers are not able

to directly suppress the background contributions. Instead, the variances imposed by the

background materials are accommodated by the other classifiers. If too little variance is

accommodated, then only the purest pixels can be discriminated. If two much variance is

accommodated, then mixed pixets can be included in the classification but the discrimination

sensitivity is correspondingly reduced. The traditional classifiers have successfully performed

species level discriminations for large contigxmus stands and fields. They have had mixed success,

however, when the species were mixed with other terrain units.

The subpixel processing approach used for signature derivation and background suppression

yields generally different discrimination performance characteristics than a Linear Mixing Model

(LiM2v0 (Adams et al, 1986). The LMM evaluates each pixet spectrum as a linear sum of a basic set

of image end-member spectra. These typically include a "shade" spectrum and n other scene

representative orthogonal spectra, where n is the number of sensor spectral bands. The end-

member spectra include "background" end-members, such as bright soil, vegetation, water, and

"residual" end-members, such as concrete, tarmac, and roofing material..The background end-

members are assumed to be in every image pixel, and the residual end-members are assumed to be

in only some of the pixels. The output is typically presented in the form of fraction planes for each

end-member spectrum, which give the derived fractions of each end-member spectrum for each

pixel. A residual plane is also produced which gives the root-mean-square-error of the fit for each

image. The LMM has been moS-t reliably used to classify pixels in a manner analogous to a

principal components analysis. There have also been attempts to use the LM_M for subpixel

analysis by either substituting the material of interest spectrum for one of the residual end-member

spectra, or by comparing the error spectrum to the material of interest spectrum. The LMM can

produce reasonable subpixel results when the material of interest has a spectrum that is orthogonal

to the other end-member spectra, and that is unique in the scene. The performance is not as reliable
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when the material of interest spectrum is either not orthogonal to the other end-member spectra or

the spectrum is not unique in the scene. The LMM should, for example, do well classifying

subpixel occurrences_of tarmac or "scene vegetation," but it would not be appropriate for detecting

subpixel occurrences of specific vegetative species.

The non-parametric subpixel processing also yields results different from those produced using

fuzzy set classification logic (Wang, 1990ab; Jensen, 1995). Fuzzy classification also yields

subpixel "membership gade" information (i.e. a pixel might have a fuzzy set membership gade

value of 0.7 cypress, 0.2 tupelo, and 0.1 water). However, it arrives at the membership grade

statistics using supervised fuzzy set maximum likelihood or fuzzy c-means clustering logic and the

results are not the same as the subpixel processing described here. Both the L_'VEViand the fuzzy set

logic assume that the overall composition of each pixel is constrained to be some combination of

the defined image classes (or end members for L1V_Vl). The AASAP process does not constrain the

overall composition of the pixel in order not to introduce unwanted errors in material fraction

estimates.

3. Application of Subpixel Processing to Discriminate Cypress and
Tupelo Materials of Interest in Landsat Thematic Mapper Imagery

The subpixet processing logic was tested on forested wetland study areas in South Carolina and

Georgia using Laadsat Thematic Mapper data.

3.1 Remotely Sensed Data

Landsat TM imagery obtained on May 4, 1992 after complete spring leaf-out were used. Four

study areas from within the Landsat TM scene were analyzed (Figure 3). Two 150 x 150 pixel

areas were used for sig-namre training and classixqcation refinement. The two training areas were

processed to detect the locations of individual cypress and tupelo trees. In addition, two 256 x 256

pixel test areas were also classified using the subpixel processor.

Low altitude color infrared (CIR) aerial photogaphy were obtained at a nominal scale of 1:7,000

and 1:22,500 for the two training areas 14 and 15 days after the TM overpass. Large stands of

cypress and tupelo, and in some cases individual tree crowns, could be identified in the 1:7,000

scale photographs. National Aerial Photography Program (NAPP) CIR aerial photographs

(1:40,000 scale) were used to analyze regions of the study area outside the two training areas.
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3.2 In situ Field Data Collection for Training and Error Assessment

In siru field sampling w_ conducted to:

1) identify relatively pure, homogenous stands of cypress and tupelo for

signature training;

2) identify locations of cypress trees mixed with other tree species, and tupelo

trees mixed with other tree species, for classification refinement, and

3) to measure errors of omission and commission in the accuracy

assessment phase of the project.

Sampling was restricted to areas that were accessible by foot. However, due to an exceptionally

dry field season (summer of 1993), many deep wetland areas that normally are inaccessible by foot

were accessible. The location of TM pixels were found in the field using a TM pixet grid that was

registered and overlaid on the 1:7,000 scale CIR. photogaphs. A global positioning system (GPS)

unit was used to identify ground control points for georeferencing and to acquire ground

coordinates for training areas.

3.3 Application of Subpixel Processing to Extract Individual Specie

Material of Interest (MOI) Information

The Landsat TM scene was ordered with nearest-neighbor resampling, 30 x 30 m pixels and path

orientation. Nearest-neighbor resampling is preferred over cubic convolution or bilinear

interpolation resampling methods for subpixet processing because it minimizes spectral

de_adation. Resampting for geometric correction is minimized with path oriented and 30 x 30 m

pixel data. Preservation of the raw spectral relationships between pixets and band-to-band spectral

relationships witi-dn a pixel increase the potential for subpixel spectral discrimination. Geometric

correction of the imagery for cartographic and cosmetic purposes was performed with cubic

convolution resampling after subpixel processing.

Georeferencing was required to associate the ground coordinates of training and accuracy

assessment sites with the corresponding Landsat TM pixels. To avoid additional resampling of the

TM imagery., the gound coordinates of these sites were plotted on a digitized base grid map. This

map was geometrically registered to the TM image. To find the location of classified pixels in the

field, another form of image registration was performed. The TM pixel _rid was registered to the

1:7,000 scale CIR photogaphs and printed on transparencies for overlay on the photographs. The
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georeferenced TM image was not used for subpixel processing.

As previously discussed in Section 2, the subpixel processing involved using one set of training

pixels to develop the cypress spectral signature ind one set to develop the mpeto spectral signature.

Another set of training pixels were used to refine the classification. All training pixels and the

classification evaluation and refinement occurred in the two 150 x 150 training image areas. A

signature can be developed for almost any material for which the analyst can identify a training set.

The principal restrictions are a) the amount of material in the training pixets should exceed 20

percent of a pixel, and b) the material should have relatively unique and consistent spectral

properties within the set of training pixels. The training set does not need to come from the same

image being classified (Huguenin, 1994). After the spectral sig-natures were developed and refined,

the remaining two test image areas were processed.

Known locations of relatively monospecific stands of cypress and relatively monospecific stands

of tupelo trees were used as training pixels. Fifty-one TM pixels of cypress from one training area

were used. Field verification revealed that each of these pixels contained approximately 85o7o

cypress. Seventy-two pixels of tupelo from three different training areas were used as training

pixels. These pixels contained approximately 90°70 tupelo. These training pixets were used by

AASAP to create a spectral sigmature for each species. The processor then evaluated each pixel in

the image to determine ff the pixel contained a subpixel spectral component that resembled the

species spectral sig-namre within a specified range of tolerances (refer to the subpixel classification

phase in Figure 2). A variety of tolerances (thresholds) were evaluated, in an iterative fashion,

until an optimal set of results were achieved.

Classification refinement involved evaluating the classification output from each iteration of the

thresholds. These intermediate classification results were evaluated with the 1:7,000 aerial

photo_aphs, some field checking, and the use of another set of training pixets. These training

pixets were known to contain subpixel occurrences of the species. The classification results were

refined until the maximum number of cypress containing pixels were correctly classified with the

minimum number of incorrectly classified pixels.

4. Accuracy Assessment

An extensive accuracy assessment quantifying errors of commission and omission was performed

for the cypress and tupelo subpixel processing classification results. Random sampling techniques

were used to select 200 locations that were field verified for the occurrence of cypress trees and

200 locations that were field verified for the occurrence of tupelo trees. For both cypress and

tupelo, 100 pixel locations were field verified to measure errors of commission (approximately 25
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locations in each of the four image areas), and 100 pixel locations were field verified for errors of

omission (approximately 25 locations in each of the four image areas).

To measure errors of commission for cypress, 100 of the pixels classified as containing'cypress

were selected using a random cluster sampling technique. Five pixels classified as containing

cypress were randomly selected in each of the four image areas. The four nearest pixels to each

randomly selected pixel, that were classified as containing cypress, were also selected. Random

duster sampling was employed to reduce the areas of field verification to localized dusters. Due to

the inaccessibility, of some deep wetland areas, some randomly selected pixels were replaced by

other randomly selected pixels. This same method was used to measure errors of commission for

tupelo.

Field verification involved orientation with the TM grid overlaid on the 1:7,000 scale CIR aerial

photographs and the hand-held global positioning system. Due to a large abundance of natural

ground reference features that were visible in the aerial photographs (for example, large tree

crowns, canopy openings, and waterways), it was possible to identify the =,ground location of

individual TM pixets with a high level of certainty. If one or more cypress trees occurred within the

estimated ground location of the TM pixel, it was recorded as a correctly classified cypress pixel.

5. Results and Discussion

Subpixel classification results for tupelo wetland for one of the training areas are shown in Figure

4. The classified pixels are draped over a Landsat TM band 4 image in various colors ranging

from yellow through orange to green that represent the proportion (fraction) of tupelo found within

each pixel (refer to inset table in Figure 4). For example, there were 365 pixels within this

subscene that contained >90% tupelo. Pixels with a high concentration of tupelo run throughout

the center of the region in a well defined wetland area. Figure 5 depicts both tupelo and cypress

subpixel classification results overlaid on a TM band 1 image of the same training area. Pixels that

contained any amount of tupelo are yellow, those pixels that contained any amount of cypress are

blue, and those that contained any amount of both tupelo and cypress are red. The well defined

wetland channel observed in Figure 4 is also apparent in Figure 5 with dense concentrations of

both tupelo and cypress. There are, however, sections of the deep wetland, for example along the

edges, where it is primarily tupelo. In the central portion of the image, there are dense

concentrations of cypress (blue).

The e_or evaluation revealed that 95 of the 100 selected pixels classified as cypress contained

cypress,, and 93 of the 100 selected pixels classified as tupelo contained tupelo. Cypress had aX_%_

error of commission, and tupeIo had a 7% error of commission (Table 2). To evaluate errors of
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omission, i0 stands of cypress and I0 stands of tupelo in each of the four study areas were

identifiedusing the CIR photography and fieldverification.Five of thesestandsin each study area

were ra.ndomly selected and five pixels within these selected stands were selected using stratified

random sampling. For cypress, 82 of the 100 pixels (25 from each image area) known to contain

cypress, were successfully classified as cypress. For tupelo, 89 of the 100 known tupelo pixels

were classified as tupelo. Table 2 lists the total accuracy for cypress, 89% (177/200), and tupelo,

91% (182/200). A Kappa coefficient of agreement (Congalton et al, 1991) is not applicable in

subpixel classification because: 1) typically not every pixel in the image is classified (often only

several materials are classified); and 2) a single pixel can be correctly classified as containing more

than one material.

A Kappa coefficient of agreement (Congalton et al., 1991) is not applicable in subpixet

classification because unlike Traditional land cover classification, each pixel in the image is not

assigned to one of the different land cover classes. In subpixet classification there is often only one

or a few materials of interest ( for example land cover types or objects of interest such as bridges)

classified. For each material of interest, each pixel in the image is classified into one of ten

percentage classes according to the amount of material of interest present in the pixel. Typically,

many pixels in the image are classified as containing no amount of the material of interest and

therefore cannot be accounted for in an error matrix. Additionally, a single pixel can be correctly

classified as containing more than one material of interest, which is a condition not suitable for

current accuracy assessment techniques.

Table 2. Accuracy Assessment Results for the Classification of Cypress and

Tupelo Using Subpixel Processing.

I | O | J[Cypress 1 951100 t 8_100 89o/0 1

 Tu to I 93/100 t 89/100 191% ]

Of the 182 pixels correctly classified as tupelo, all 182 sites contained tupelo trees mixed with other

tree species. At most of these sites the pixel area was predominantly occupied by tupelo (greater

than 50%), but at many sites tupelo trees occupied less than 50% of the pixel area. In

approximately a dozen of these sites, only a few tupelo trees occurred representing as little as 20%

of a pixel area. In evaluating the accuracy of tupelo in each of the four study areas, it was observed

that the.accuracy in each area was not significandy different. The accuracy in one training area was

slightly better than the other three areas, but no area had a total accuracy lower than 84%.
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Based on this sample,it can be statedwith 95% confidence, that 93% + 1.2% of all pixels

classified as tupelo are correct. Eighty-nine percent, plus or minus 1.2%, of all areas containing

tupelo were correctly classified. For cypress, also at the 95% confidence level, 91% + 1.2% of all

pixels classified as cypress are correct. Eighty-seven percent, 4- 1.3%, of all areas containing

cypress were correctly classified.

A follow-up study comparing the subpixel classification of cypress and tupelo versus a maximum

likelihood and minimum distance classification of cypress and tupelo will be reported in a separate

paper.

6. Conclusions

Spectral subpixel processing classified tupelo at 91% accuracy and cypress at 89% accuracy in

Georgia and South Carolina wetlands. Extensive field investigation revealed that both tupelo and

cypress trees were successfully classified when they occurred both as pure stands and as mixed

stands, i.e. with other tree species. Relatively pure stands of tupelo and cypress trees were detected

in high concentradons in the deep wetland areas. Less dense concentradons of tupelo and cypress

were classified in the broad wetland transition zones where tupelo and cypress were typically

mixed with other tree species. Small, isolated pocket wedands containing small numbers of tupelo

and cypress trees were also classified.

The subpixel process can be used to detect spectrally unique materials in any multispectral data

source. The process addresses the mixed pixel problem and enables the classification of materials

sma.ller than the spatial resolution of the sensor by: 1) extracting a pure subpixel signature of the

material of interest (units of the pixel that are not the material of interest are removed from the

signature), and 2) extracting and analyzing subpixel components of each pixel in an image and

identifying those subpixel components that match the material of interest spectral signature. While

the analyst could use a library of pre-existing spectral signatures such as that collected by NASA,

the algorithm presented here provides the analyst with an automatic signature development

capability that produces signatures tailored to a specific material of interest in the study area with its

unique environmental conditions.
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8. Figure Captions

Figure 1. A schematic diagram of how a material of interest (MOI) (cypress in this example) is

extracted using subpixel processing from a hypothetical Landsat TM 30 x 30 m mixed

pixel containing equal proportions of cypress, tupelo, and water. (a) The integated

spectrum for the pixel bears lirde resemblance to the pure spectrum of any of its

constituents. (b) The backgound reflectance specmam is identified. (c) The backgound

reflectance spectrum is subtracted from the original integrated spectrum leaving only

information about the proportion of the material of interest, cypress, within the pixel.

Figure 2. Typical stages in subpixel processing.

Fig'ure 3. Approximate location of training and test study areas in South Carolina and Georgia.

Figure 4. Tupelo land cover derived from subpixel processing of Landsat TM data for a region in

South Carolina. Valuable information about the proportion of tupelo found within each

pixel is summarized in the inset table and color coded.

Figure 5. Land cover derived from subpixel processing of Landsat TM data for a region in South

Carolina. Pixels containing any amount of tupelo are in yellow, any amount of cypress

are in blue, and pixels containing any amount of both cypress and tupelo are in red.
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